If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-9x-390=0
a = 2; b = -9; c = -390;
Δ = b2-4ac
Δ = -92-4·2·(-390)
Δ = 3201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{3201}}{2*2}=\frac{9-\sqrt{3201}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{3201}}{2*2}=\frac{9+\sqrt{3201}}{4} $
| 9=m+20+54 | | -5x+5=2x+10 | | 8=5z | | -4(x+4)+2x+5=6x+8 | | 5/x=15/33 | | j+6=-j | | 8x-8=2-7x | | (3x-5)+28=90 | | v/5-10=24 | | 2k=6k+8 | | -2/3x+2/3=1/3 | | (3x-5)+28=180 | | 14-3x=4+x+x | | 6x+2/3x=180 | | -4u-40=4(u+4) | | 6-3x=4x-7 | | 3x+4/7+x+40/6=12 | | 15y=18+6y | | -4x-25=-7x+12 | | 0,5p-3,45=-1,2 | | 3(x+-4)=12x | | (3x+5)+28=180 | | 3(3x-4)=5(2x+1) | | -8x+6=3x+7 | | 4x+13=2x-20 | | 2x-3+5x=-5+x | | 3u+-8=4 | | (8x-19)(5x+11)=0 | | -3(6x-4)+9=3(x+3) | | 7r-15=r+15 | | -3/11m=14/7 | | 2x+6=13x-4x*62 |